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SUMMARY

A prototype software system has been constructed to detect anomalous Space Shuttle Main

Engine (SSME) behavior in the early stages of fault development significantly earlier than the

indication provided by either redline detection mechanism or human expert analysis. The major

/ task of the research project is to analyze ground test data, to identify patterns associated with the

anomalous engine behavior, and to develop a pattern identification and detection system on the

basis of this analysis.

A prototype expert system which was developed on both PC and Symbolics 3670 lisp machine

for detecting anomalies in turbopump vibration data was checked with data from ground tests

902-473, 902-501,902-519, and 904-097 of the Space Shuttle Main Engine.

The neural networks method was also applied to supplement the statistical method utilized in the

prototype system to investigate the feasibility in detecting anomalies in turbopump vibration of
SSME.

In most cases the anomalies detected by the expert system agree with those reported by NASA.

On the neural networks approach, the results are given the successful detection rate higher than

95% to identify either normal or abnormal running condition based on the experimental data as
well as numerical simulation.

1. INTRODUCTION

1.1. SSME Cycle

The Space Shuttle Main Engine (SSME) is a complex and high performance propulsion system.

A schematic of the engine with typical 109% power level operational parameters are shown in

Figure 1. In the SSME cycle, several turbopumps are involved (Ref. 1). At the propellant inlets,

low pressure fuel and oxidizer turbopumps (LPF/OTP) provide the proper pressure head for the

two high pressure pumps. Fuel from the high pressure fuel pump discharge flows to cool the

main combustion chamber (MCC), nozzle, and other hot components of the engine. The main

chamber coolant discharge powers the low pressure fuel turbine (LPFT). The low pressure

oxidizer turbine (LPOT) is driven by the oxygen from the high pressure oxidizer pump (HPOP).

The oxygen is also fed to a preburner boost pump (PBP) to supply oxidizer at a sufficiently

higher pressure level to the preburners. The fuel-rich combustion gases are provided by the two

preburners to each respective high pressure turbine. The turbine discharge is mixed with oxygen

from the HPOP outlet. Final combustion occurs in the MCC and the combusted gases expand

through the supersonic nozzle to produce the thrust.

1.2. Vibration of Pumps

The bearings of the HPFTP and the HPOTP have wear limitations. The HtK)TP bearings are

more critical since they are bathed and cooled in LOX. During the early days of the SSME

program, two major HPOTP failures increased the emphasis of turbomachinery monitoring. One

of the key sensors to detect the bearing wear and condition is the strain gauges mounted
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internally and externally near the turbopumps. Housing vibration is measured by external

accelerometers. In the present study, the major effort is to employ time series data from strain

gauges and accelerometers for early detection of turbopump anomalies, such as bearing wear,

cage condition, and race condition.

1.3. Methods of Detection

The expert system has been utilized to analyze vibration data from each of the following SSME

components: high-pressure oxidizer turbopump, high-pressure fuel turbopump, low-pressure fuel

turbopump, and preburner boost pump. The expert system locates and classifies peaks in the

power spectral density of each 0.4-see window of steady-state data. Peaks representing the

fundamental and harmonic frequencies in the power spectral density of both shaft rotation and

bearing cage rotation are identified by the expert system. The anomalies are detected based on

the amplitude of peaks of fundamental and harmonic frequencies. These peaks are found on the

basis of the SSME power level, the ratio of cage to shaft rotation, and the required consistency

among the different harmonics of each. These data are reduced to the proper format from sensor

data measured by strain gauges and accelerometers. By using the statistical method, anomalies

are then detected on the basis of sequential criteria and two threshold criteria determined from

running averages and standard deviations of nominal data. These sets are individually for the

amplitude of each of these peaks: a prior threshold used during the first few windows of data

in a test, and a posterior threshold used thereafter.

For the neural network monitoring anomalies, the input layer of a three layers neural network

uses the same peaks as that of the _tatistical method as the basic inputs. The statistical method

system will be reported first and the neural network approach later.

2. MONITORING SENSORS AND SPECTRAL DATA

Early monitoring instrumentation consists of external accelerometers and internal strain gauges

to monitor the overall loads and vibration levels in the time domain. In many situations, due to

the stiffness and damping of the turbopumps, the bearing wear can be directly correlated with

the housing vibration as measured by external aecelerometers. A strain gauge is mounted to the

housing weld of some of the HPOTP units in order to examine the loads at that location. It was

found that the bearing characteristics have a close relationship with these weld strain gauge data.

The Flight Accelerometer Safety Cutoff System (FASCOS) has been developed and successfully

used in ground tests as a redline indicator. In short, the vibration data system is primarily

supplied by the turbopump accelerometers and FASCOS.

Power spectral densities were obtained from NASA by FFT (fast Fourier transform) for

sequential 0.4-see windows of data. The typical data for the amplitudes at various frequencies,

especially at synchronous frequencies and its harmonics are shown in Figure 2 for high-pressure

oxidizer turbopump. A cascade plot of spectral density for an external accelerometer mounted

on the high pressure fuel pump is given in Figure 3. It can be seen that there is no appearance

of anomaly between 70.0 and 85.0 seconds into the test time frame. The anomalies appear in
later time windows around 170.0 seconds.

2
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3. EXPERT SYSTEM BASED ON THE STATISTICAL METHOD

The prototype expert system based on the statistical method has been designed for detecting

anomalies in turbopump vibration data from ground tests of the Space Shuttle Main Engine.

3.1. Pre-processing of Sensor Data

Vibration data was provided by NASA in the form of FFT from accelerometers mounted on the

oxidizer and fuel pumps. A set of Fortran programs running on the UTSI VAX 11/780 has been

developed to read these data tapes in NASA binary format (which is inherently machine-

dependent), swaps bytes from the NASA binary format to the VAX internal binary representation,

and then converts the data into a portable ASCII format. After initial preprocessing on the VAX,

the power spectra are stored in a form which can be quickly sent to any other platform at UTSI.

Currently, the data are moved via ethernet to a Symbolics 3670 lisp machine or a PC, and are

analyzed as input by the expert systems running on these two platforms.

3.2. Two Versions of System

The earlier operational expert system (Ref. 2) was implemented on a Symbolics 3670 lisp

machine. While good preliminary results have been obtained with this implementation, the lisp

machine platform and the proprietary lisp language available on this platform both severely limit

the portability of the expert system software. Also, the lisp language does not produce run-time

code as efficient as that produced by compilers of procedural languages.

w,.-

In order to maximize the portability of the expert system software and improve the user interface,

a re-implementation of its logic in the ANSI standard version of the C programming language

was accomplished on PC (Ref. 3). By employing ANSI standard C with the standard C I/O

library and making few changes on machine-dependent portion, the expert system can run on any

platform which has sufficient memory and disk space for the operation of the software and for

the data files it requires.

3.3. System Components

Four major modules of the system (C version) are Frequency Extractor, Anomaly Detector,

Hypothesis Generator and User Interface, as illustrated in Figure 4.

The Frequence Extractor is designed to identify the fundamental and harmonic frequencies of

both shaft rotation and beating cage rotation in each FFT window.Firstly peaks representing

candidates for the shaft fundamental are reliably found based on an empirical linear fit, for each

type of turbopump, of shaft rotation speed to SSME power level as given in Figure 5. The actual

shaft and cage fundamental and their harmonics are then identified based on the ratio of cage to

shaft rotation and the required consistency among the different harmonies of both shaft and cage.

Freq-Extra is also designed to detect the intermittent frequencies whose amplitudes are above a

specific value (noise-level).

Anomalies are then detected in Anomaly Detector on the basis of thresholds (prior and posterior)

3
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and sequential criteria set individually for the amplitude of each fundamental and harmonic

frequency of both the shaft and the cage. A prior threshold is used during the In'st few windows

of data in a test, while data is first being accumulated for that test. Based on the accumulated

data, a posterior threshold is then determined and used for the remainder of the test. Values for

the prior threshold of 300% of the amplitude observed in the first window of data, and values

for the posterior threshold of 5 standard deviations above the running average of nominal data

have been found to give good results for each of the ground tests analyzed to date. For the

threshold criteria, anomaly of any identified frequencies is detected when its amplitudes is above

its threshold. For sequential criteria, anomaly of any identified frequency is detected when

anomalies keep showing in more than three consecutive windows.

The Hypothesis Generator creates hypotheses to apply to either a single sensor or multiple

sensors for anomalies data analysis. Hyper-Gene provides recommendations based on the return

either from a single sensor detection or multi-sensors identification weighing output of each

return. In the case of multi-sensors, the system will determine the severity of anomalies,

measured by possibility, good possibility and almost positively, based on the consistence and
coherence of each sensor.

The User Interface is graphics-oriented and mouse-driven. It provides users several windows to

actively select as screen or hardcopy display, such as Process Status, Single FFT Window,

Multiple FFT Windows, Waterfall plots, FFT Recall Windows and Output Files. With a mouse

and simple pulldown menus, users can switch among these windows instantly anytime during

processing. A sample of interactive (or simulated on-line) session is given in Figure 6. Users first

sketch processing plan interactivel,v as in Figure 6a. Figure 6b shows the Process status at the

specific time at certain power level, The plot of Single FFT and analysis information is shown

in Figure 6c at a specific time. Figures 6d and 6e are the Multiple FFT plots and Waterfall

(cascade plots) plots, respectively. FFT recall windows are used for post-test analysis to recall

all information in the complete test process, as shown in Figure 6f. The output files save detail

records for further examining of anomalies.

3.4. Results of Anomalies Data Analysis

The results of anomalies detected by the system for the data from the ground tests 902-473,

902-501, 902-519 and 904-097 are summarized in Tables 1, 2, 3 and 4, respectively. Results

obtained from NASA reports are also listed in a separate column for comparison. The expert

system results agree with those stated in the NASA reports, with two exceptions: (1) In test 902-

519, HPFTP 50% Sub-synchronized frequency was not detected; and (2) In test 904-097: HIK)TP

second cage frequency was not detected by the system. These discrepancies require further

investigation. The overall results assure us that the current strategy for detecting anomalies

works reasonably well for most cases tested.

4. NEURAL NETWORKS DIAGNOSIS

For a specific turbopump component, the fundamental frequency and harmonics for the normal

and abnormal conditions have their distinct characteristics as shown in Figures 7 and 8. The

neural networks algorithm is a powerful pattern recognition method. Thus, the application of the
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neural nets techniques to the HPFTP's data from test 902-501 and 902-519 allows us to examine

the feasibility in diagnosing the anomalies (Ref. 4).

4.1. Neural Network Algorithm Description

A three-layer Back-Propagation (BP) Neural Network has been selected for the present study.

Multilayer BP networks have been studied extensively and are widely used for pattern

classification. Multilayer networks are able to classify non-linearly separable classes. In the

present case, a three layer network is utilized including input layer, hidden layer and output layer.

A 3-layered (input, hidden,outpu0, fully connected, feed-forward network as shown in Figure 9.

The normalized data sets are utilized. Both input and output are continuous-valued ('between -0.5

and 0.5) vector. The outputs generated by the network are compared with the desired or target

outputs. Errors are computed from the differences, and the weights are changed in response to

these error signals as dictated by the Generalized Delta Rule (Ref. 5). Thus, a BP network learns

a mapping function by repeatedly presenting patterns from a training set and adjusting the

weights. A commercial neural network program named ANSim (Ref. 6) is utilized for the

training process as well as the testing process.

The Training Procedure is in the iterative fashion. It loops repeatedly over the set of training

patterns until the total root mean square (RMS) error for all patterns is less than the specified

value, e.g. 0.1. The Testing Procedure is forward feed processing.

4.2. Neural Network ANSim Software

A commercial neural network program named SAIC ANSim 2.30 is a graphics oriented, menu-

based artificial neural system (ANS) simulation program, which provides a complete complement

of neural model development, allocation and analysis capabilities, including a powerful ANS

creation, training, execution and monitoring tool. ANSim enables users to quickly implement

and utilize ANS models using 13 paradigms such as Back Propagation (BP), Hopfiled Network,

etc. ANSim enables the user to configure any number of ANS neural networks. It drives each

network with a sequence of training and/or input data. For each model, ANSim will (1) monitor

the response, (2) capture the output, and (3) save the configuration for later re-use. ANSim is

integrated under Microsoft Windows to provide an effective, easy-to-use interface. A Floating

Point Processor for ANSim is available to speed up the training clock time. A PC 386 (VGA

or EGA monitor) with the SAIC's Delta Floating Point Processor, which is a 22 MFlop AT bus

compatible processor, allows for high speed Neural Network Systems training and processing.

4.3. Results Obtained from the Experimental Data

The typical data sets are obtained by the pre-processor module as shown in Figure 10. consisting

of synchronous frequency samples of normal and 240-hz abnormal data sets for sensor 696 and

698 of Test 902-501. The sensor 613 of Test 902-519 for Synchronous and Sub-synch frequency

data is shown in Figure 11. The initial selected component for the current study is the HPFrP.

The vibration data from ground tests 902-501 and 902-519 for the HPFrP as shown in Figures

7 and 8 are utilized to the current vibration anomalies detection. The reserved testing data,

which have not been used for training the network in the same test, are applied to assess the
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effectiveness and feasibility of th_ network approach. The successful detection rate is higher than

95% to identify either normal or abnormal running condition. The results have indicated that

the application of Neural Network to the available SSME vibration data sets in diagnosing

existing faults in the data is a viable method. To reassure the neural network's effectiveness, the

investigation of more cases and more fault scenarios are required. Since the limited ground test

data is available, the study using the data generated from a NASA/MSFC's numerical simulator

is reported in the next section.

4.4. Results Obtained from Numerical Simulator

The current simulated data were provided by Fred Kuo at MSFC from a numerical simulator

(Ref. 7) developed at NASA/MSFC. Three data sets are obtained from the Numerical Simulator.

These cases received from NASA on Nov. 15, 1992 and Feb. 18, 93 have been studied. Two

of these sets are "Rotor.DB" and the other is "Rotor.UB". The displacement response in the Y

and Z direction and the side-force in the Y and Z direction vs. dimensionless time as shown in

Figures 12, 13 and 14, respectively. These sample numerical data were analyzed by fast Fourier

Transform in the spectrum plots with three different sizes of window for sample response-

amplitude data plotted in Figures 15, 16 and 17. The side-force sample data are shown in

Figures 18, 19 and 20. The sample results are given in Tables 5 and 6 for both Y-response and

Y-force of Rotor.UB and Rotor.DB, respectively. Even with the limited data base, the successful

rate is very reasonable after 300 training cycles in SAIC ANSim 2.30.

4.5. Comments on the Approach of Neural Networks

For the training process of the Neu_,al Networks, the clock time of computer computation on a

PC-386 with Floating Point Processor is less than 1 minute. The testing time of the feed-forward

process is near real time in the present case. This is important to know this computation time

for planning on-line or off-line operation in addition to its ability to identify the correct

anomalies.

The limited application of neural networks to the HPFTP and the simulation data have shown the

effectiveness and feasibility to diagnose the anomalies of turbopump vibrations. The further

investigation on data from a numerical simulator and actual experiment data is warranted in the

future.

5. CONCLUDING REMARKS

Automatic detection of anomalies in Space Shuttle Main Engine Turbopumps has been

implemented as a prototype software system on a Symbolics 3670 lisp machine and on a PC.

The system has demonstrated its capability in detecting anomalies in turbopump vibration data

earlier than the indication provided by the redline detection mechanism. The present strategy

based on the statistics distribution of data in detecting anomalies for SSME turbopumps seems

to be working well, even though some limited cases require further study. On the other hand,

the limited application of neural networks to the HPFTP has also shown the effectiveness and

feasibility to diagnose the anomalies of turbopump vibrations. The further investigation on data

from experimental data sets and the numerical simulator is recommended before implementing
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6b. Process Status: Power-level vs Time
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6c. Single FFT Plot & Analysis Message
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6d. Multiple FFT Plots & Analysis Message for Three Sensors

13



iii

r_

:; t

E

LJ
U

: z

i

i

ii

i.i,

I

w

l_..t i/ i l -.! /i l / / /- !1 ! / / //
I!J. ; /1, ! i i, ; / /ii !iiil

17JJL.4d._ ,I_.._L LXL_ L !, Z / .I i : : : 2 - / /
( "A • , _ • F , • • • • ° *

'69 il ' " ; ,- , ! ! .' ; t o .' ! .7

• , / I l / ; i I / ¢ l ; ," / i l ; . !
r . : l Ill l I I l : //]l /] /

I Um|IllIIJ|
Figure 6. (cont.)

6e. Cascade Plots of Three Sensors

_) ' TI..- ISS.8..e.

ooo,=_i:_i
L.L[Z[j..u_Li..LcLi

:000 I I i I I ' ......

,ooo4-4 " ..... II
..... _. I |

0 _00 11000 t500

( Frequlr_l_ )

_ TI_e- 170.2 _c. " "

'i 't it_il_i_ -t i' 1't.I

, !i,..i_ ,1 I
'"['i:,' •t._.:,,,,,,,..,....t..,.,..,..",I 'Ji ,l"t.,,_tr,..L,.,,....,....1.,..i1,'"'....
"t" .... i"bl"t"}"_ 'l"f"!"t"l"t"l"t"l"t'T't"k

.[J. I.j..i.j..Li.J.i..i.i..LI..Li..Li..Li..LL!
I , ,. ,i,!_ .. ,11.._i_t, .. ." " ": '"'''''i-J•'!--r

e Ti_e- 170.6 siC.

i I i i i ; ; ; i ;" i' " '_ililtiitii_!I!ll il!
t'T'FI"T"I""_,_,I,_,,,:-""'"_":"_"'"_"_"'"_'
! _ 'iltitllil!IIl]

4.... i.... i-._.4.+-r._-._--_,--l..H-4.._-4-.,.
I II ',] ,'.d..L.I..LLl..b..,..l.I..d.

I. _ ; I i i
.1.......I..-i....I

_.Ii_iIi!ilIiji

Figure 6 (cont.)
6f. FFT Windows for Post-test Analysis
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Figure 7. Samples of Normal and 240-hz Abnormal Data from HPFTP

Sensors of Test 902-501 at the Thrust-level 109%.
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Figure 9. Three-layer Back-propagation Neural Network Architecture.

17



50 50

m

+ +
R
U

4-_

-r-I
m

OJ

,,I
L500

T9020501 Sensor 696:

I | | ; ; ; ; ;-+-_1_

3900

169.0-213.0 _tjnc

Amplitude

m

T9020501 Sensor 698:

Amplitude

w

w

: x

m

_+_

5O

_J

m

aJ

Amplitude

I00 3300

T9020S01 Sensor 696: 169.0-213.0 240HZ

50

or]

I

100

T9020501 Sensor 698:

I i+_,__plitude

3300

169.0-213.0 240HZ

Figure 10. Data Histogram of Synchronous Frequency and 240-hz

Frequency from Sensors 696 and 698.

18



u

50

o]

13oo

T90205£9 Sensor 6£3:

I,illll,  
2000

72,2-1.19.4 _;_nc

Amplitude

_0

>,
4J

¢n

300

IIl_h_J__ Amplitude

2000

T9020519 Sensor 613:396.2-444.2 S_nc

N

m

5O

140 1660

T9020519 Sensor 613:72.2-119.4 Sub-S

Amplitude

_0

>,

co

..... L,,III
1.1.40

Amplitude
!>

1660

T90205£9 Sensor 613:39G.2-444,2 Sub-E

Figure 11. Data Histogram of Synchronous Frequency and Sub-synchronous

Frequency from Sensor 613.

19



J , i a i , ,
25000

-2

=

w ¸

20000

15000

10000

5000

0
0 :0 ;0 a 1 I I I ! I2 0 4 0 'c000 $000 10000 12000 14000 1(;000 10000 20000

dimensionless time

;

w

(9

w

= =

m

• , ' , '", '' i i " '" '"

I

0.001

O.O00S 0

-0.0005 -.

0 2000 4000 6000 lO00 10000 12000 14000 16000 10000 20000

dimensionless time

(9
u

.M

0.001

0.0005

-0.0005

0 L

i
i , , | i

2000 4000 6000 0000 10000 12000 14000 1(;000 10000 20000

dimensionless time

0.00!

- 0.0005

(9
cQ

(9

N

-0.0005

w

0

w

, , i ! i , i ! ,

I I I I 1 | !

2000 4000 £000 I000 10000 12000 14000 11;000 10000 20000

dimensionless time

m

*0.0005

i I

2000 4000 £000 0000 10000 12'000 14000 1GO00 18000 20000

dimensionless time

Figure 12. Sample Data Received on Nov. 15, 1992 (ROTOR.DB).
2O



]

I

,--i

,+

z l T.000000_-04

L_
_.000000e-04

_i 5.000000e-04

4.000000e-04

?0) 3.0000000-04

U + t_

"++!.000000.-o,1.0000000-04

0

-1.000000e-04
0

5000

5000

25000

20000

15000

10000

5000

+ + , , , i - i i

.+

• I I I , | I I I I I

2000 4000 GO00 0000 10000 12000 14000 16000 11000 20000

dimensionless time

15

10

$

0

-10

-15 --

10000 15000 20000 25000 30000 0 5000 10000 15000 20000

dimensionless time dimensionless time

e l+,dat# --

1

P.,

,,4

-1

-4

10000 15000 20000 25000 30000 0 5000 10000 15000 20000

dimensionless time dimensionless time

25000

25000

$0000

3000(

Figure 13. Sample Data Received on Feb. 18, 1993 (ROTOR.DB).

21



i • i i , , , ,

w

w

w

= =

,+ :++

w

-0.0000

-;:i -o.oo1
0

L

r_

I

5000

3000

25000

20000

15000

10000

5000

0

I I

10000 1S000 20000

dimensionless time

z

10000 15000 20000

dimensionless time

Figure 14.

2 O0 4 O0 £000 8000 10000 12000 14000 16000 18000 20000

dimensioniess time

25000 30000

2O

15

I0

a_ 0
0

0
0

o'l

-I0

-15

-20

0 5000

I I

10000 15000 20000

dimensionless time

15

_.0

S

G)
0

o

if)

N
-10

-15

25000 30000 0 5000

I I I

10000 15000 30000

dimensionless time

Sample Data Received on Feb. 18, 1993 (ROTOR.UB).

22

25000

|

25000



3.000000e-05 _ . , , , t , m m

w

= .

=

r_2.SOOOOOe-05

4J

r_

12.000000e-05

1.5000000-05

1.000000e-05

5.000000e-06

3.000000e-05

200 400 600

I ! 1 I I I

800 1000 1200 1400 1600 1800 2000

Frequency

l m l m ! s I s

=
w

W

u

_=

F
w

_4
E

w

_==

w

2.$00000e-05

,-4

2.000000e-05

a 1.5000000-05

1.000000e-05

5.0000000-06

3.000000e-05

2.500000e-05

.1..I

-M

,--I

'_2.0000000-05

.a 1.5000000-05

1.0000000-05

5.0000000-06

400

Ii
0

0 200 400

LI
m I I I I

600 soo looo noo 1_oo ,_oo 3ooo 2ooo

Frequency

| | I i ' | | |

.

6oo soo zooo noo _4oo ,6oo ,8oo _ooo

Fre_ency

Figure 15. Response Amplitude After Frequency Extraction from

Sample Data Received on Nov. 15, 1992 (ROTOR.DB).

23



i i I i | I i i| I
i

w

= .

i

liw

r_

w

w

roD.

- =

L:--

W

W

1.400000e-05

1.200000e-05

1.O00000e-05

1-1
-r't
,--I 8.000000e-06

6.000000e-06
(1)

_, 4.000000e-06

la
2.000000e-06

i.400000e-05

1.200000e-05

1.000000e-05

.I.J
"_ 8.000000e-06
,--I

_ 6.000000e-06

_ 4.000000e-06

2.000000e-06

I I !

200 400 600 800

! I I I |

000 1200 1400 1600 1800 2000

Frequency

i I _ J I i i

I-II
I I I I I I 1 l

200 400 , 500 800 1000 1200 1400 1600 1800 2000

Frequency

1.400000e-05

1.200000e-05

1.000000e-05

ro

•I.J 8.000000e-06

i'M

_'_ 6.000000e-06

_ 4.000000e-06

_ 2.000000e-06

I s ! I ! | I I
I

I I I| ! a

200 400 600 600 1000 1200 1400 1600 1800 2000

Frequency

Figure 16. Response Amplitude After Frequency Extraction from

Sample Data Received on Feb. 18, 1993 (ROTOR.DB).
24



I ! I I ! I t ! |

w

w

= =

i

W

El:

m

L_

W

1.400000e-04

OJ

r_l.200000e-04

.I-J

l.O00000e-04

8.000000e-05

_L6.000000e-05

4.000000e-05

2.000000e-05

11 , iltil

200 400

1.400000e-04

_.) 1.200000e-04
"0

4-,1
•_ 1.000000e-04
r'-I

_L8.000000e_05

6.000000e-05

ilJ

LI 4.000000e-05

2.000000e-05

0
0

600 800 1000

Frequency

1.400000e-04

r_ 1.200000e-04

r-I

l.O00000e-04

8.000000e-05

(_6.000000e-05

4.000000e-05

2.000000e-05

Figure 17.

I I '1 [ I

I ! I I

1200 1400 1600 1900 2000

! I | I

, lJ,, , , ,,I , J , ,
200 400 600 eoo 1ooo _2oo _,_oo z6oo zeoo

Frequency

i I I I |
! | I I

:uO0

/
, _, , , Jl , , , ,

200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency

Response Amplitude After Frequency Extraction from

Sample Data Received on Feb. 18, 1993 (ROTOR.UB).
25



w

,_w

w

W

w

w

luma

r_

w

O)
_0

.IJ
-,-I

U

0

"0

U

0

(1)

U

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

$. 000000e-02

0
0

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

5.000000e-02

0
0

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

5.000000e-02

0

| ! i I I I
I ! s

I

200

1
400

Ii
600

Frequency

i I

I,ILIIL.fILlI,L
800 1000 1200 L400 1/_00 1800 2000

I ! i I I

200 400 600 800

Frequency
! I

I | l I I

2000

600 800 1000 1200 1400 1600 1800

Frequency

' 2000
200 400

Figure 18. Force Amplitude After Frequency Extraction from Sample

Data Received on Nov. 15, 1992 (ROTOR.DB).

26



0.2 i I I I I i I I I

r

L i

W

__m:=_

ab,,,a

qmr, J

0.18

0.16

0.14

0.12

4.1 0.1
-,'-I

'_ .0000000-02

Q) 6.0000000-02

4.000000e-02

q-I

2.000000e-02

0
0

0.2

0.18

0.16

0.14

0.12

"_ 0.1
r'-i..

_" 8.0000000-02

rJ 6.0000000-02

P,
q-I 4.000000e-02

2.0000000-02

o

/

!

200

!

200

o

400

400

0.2

0.16

0.16

0.14

_) 0.12

0.1
-,"4

_'_ 6.0000000-02

_,) 5. 000000e-02

(.)

(_ 4. 000000e-02

2.000000e-02

0 " --
0 200 400

! a I

600 800 1000

Frequency
8 l I

200

o !

L400 IG00 1600 2000

!

6oo 0oo lOOO 12oo
Frequency ....

! m , D

.400 1600 1600 2000

o I u I I e nl

I
I

I i
600 .000 1200

Frequency

1
o !

.400 1600 1600 2000

Figure 19. Force Amplitude After Frequency Extraction from Sample

Data Received on Feb. 18, 1993 (ROTOR.DB).
27



1.4 i ! i ! i ! i _ i

;,=..

1.2

OJ 1

.I-)
.M
,-I 0.8

OJ o.6
U

0
0.4

0.2

o
o

Lii II
200 400

l,ii Ill,iliA. ,i li.li il
600 eoo 1000 1200 ].400 1600 1000 2000
Frequency

1,4

1,2

_J
-r4
r-1 0.8

0,6

U

O
_4 0,4

0"2 I

oi
o

1,4

1,2

_J
-r_

. _ 0.8

0.) 0.6
r,.)
LI
0

0.4

0,2

o
o 200

i i i i ! 6 i *

, II,,I i,l[li._ J l, II.
soo soo ',ooo ].200 ].400 Isoo ',soo 2000
Frequency

i i i i i i !

) .;;:.

_II I l[_i Jill I,I
400 . 600 800 1000 1200 1400 1600 1800 2000

Frequency

Figure 20. Force Amplitude After Frequency Extraction from Sample

Data Received on Feb. 18, 1993 (ROTOR.UB).
28



w

w

w

r

W

E_

O_

r'l
U')
I

N
O
O_

.o

u

Mr'-

o_ c

e,

_o _

_:_ o

_.- n,.t

I
['t _ "_

_ o

oo _. U

0

o_

ral,_

0

I
C_
O

M v_o M_ m

"0 I _, -" el I1"0 @ I_ I_.

_""0 _ ::.t'_-,4 ) t_l "0 m,

., ,;8_ _';'

,_ IF,

°
0 _._

'° iil
o_o'_ oo
_ ._ ,4o..H_r,O

_._ _!
o

• _. • k,. "_

i t"l _' _' U

.._" __'_

r-I

..-I

t_

bJ
.-J

29

iv)
r'-
,q,

I

0
ai

_: ,,
ul •

_0

Ul kl
r_
M

_ oo_u

,'Co_o

U.,-

o _e_U

• .,-I

@o I rJ_:: 0'_o it

13.0 t_t 0t_

dl_J

_1 r- tr) _11

._... g-;'
o_._ ._o-_. o_

_ o,.',_.."

i _

_._ a_. °-_. _

I-

LsJ
..J

I'--



w Raw Data (_'-R_=p_ _ I_)T_)(_._[_, Received on Feb 18,1993 )
After 300 training cycies
Random Selection of Training Data Sets

Self-Testing After Training

Actual Class of Observation

Normal Abnormal Total P2%
=

Normal 3 0 3 100
Abnormal 0 5 5 100

Total 3 5 8 100

P1% 100 100 100 100

New Dat_, Testing After Training

Actual Class of Observation

- =

Normal Abnormal Total P2%

Normal 1 0 1 100
Abnormal 1 5 6 83

Total 2 5 7 91

P1% 50 100 75 83

NOTE: PI: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 5. Neural Networks Results of ROTOR.UB

a. for Y-Response
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Raw Data (_'-I_ ¢_ R_i_R,_I_, Received on Feb 18,1993 )
After 300 training cycles
Random Selection of Training Data Sets

.Self-Testing After Training

Actual Class of Observation

Normal Abnormal Total P2%

Normal 3 0 3 100
Abnormal 0 5 5 100

Total 3 5 8 100

P1% 100 100 :100 100

New Data Testing After Trainina

Actual Class of Observation

Normal
Abnormal

Total

P1%

Normal Abnormal

1 0
2 4

3 4

33 100

Total

1
6

7

67

P2%

100
67

84

75

NOTE: PI: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 5. Neural Networks Results of ROTOR.UB
b. for Y-Force
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w Raw Data (_'=1__ ¢_ R_I_oI_@,
After 300 training cycles
Random Selection of Training Data Sets

Received on Feb 18,1993 )

Self-Testing After Trainina

Actual Class of Observation

,Normal
Abnormal

Normal Abnormal

6 0
0 1

Total

6
1

P2%

100
100'

Total 6 1 7 100

P1% 100 100 100 100

-- New Data Testing After Training

Actual Class of Observation
p.-

u

u

Normal Abnormal Total P2%

Normal 5 2 7 71
Abnormal 0 1 1 100

Total 5 3 8 85

P1% 100 33 67 76"

NOTE: PI: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 6. Neural Networks Results of ROTOR.DB

a. for Y-Response
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Raw Data (_'-I_0'_ ¢_ l_ti'(_R°l_[_, Received on Feb 18,1993 )
After 300 training cycles
Random Selection of Training Data Sets

=

L_
w

Self-Testing After Training

Actual Class of Observation

Normal Abnormal Total P2%

Normal 6 0 6 100
Abnormal 0 1 1 100

Total 6 1 7 100

P1% 100 100 100 100

[New Data Testing After Training

Actual Class of Observation

Normal Abnormal Total P2%

Normal 6 1 7 86.
Abnormal 0 1 1 100

Total 6 2 8 93

P1% 100 50 75 84

NOTE: PI: p(prediction=x, actual=x), P2: p(actual=x, prediction=x)

Table 6. Neural Networks Results of ROTOR.DB
b. for Y-Force
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